@GeoffreyDeSmet

Fold time and space
for maintenance scheduling and
school timetabling

by Geoffrey De Smet
Timefold

The world is full
of scheduling problems

For example

The world is full
of scheduling problems

Some are automated

Few are optimized

Let's optimize them
with Java and AI

Is optimization worth it?

Vehicle routing case study

Expected: -1% driving time

Result: -25% driving time

⇒ -10 million kg CO² emission per year

⇒ -100 million $ cost per year

Maintenance Scheduling

School timetabling

The web UI

Calculate score

public long calculateScore(TimeTable timeTable) {
    long hardScore = 0;
    for (Lesson lesson1 : timeTable.lessons) {
        for (Lesson lesson2 : timeTable.lessons) {
            if (lesson1.room == lesson2.room
                    && lesson1.timeslot == lesson2.timeslot) {
                hardScore--;
            }
            if (lesson1.teacher == lesson2.teacher
                    && lesson1.timeslot == lesson2.timeslot) {
                hardScore--;
            }
            if (lesson1.studentGroup == lesson2.studentGroup
                    && lesson1.timeslot == lesson2.timeslot) {
                hardScore--;
            }
        }
    }
    return hardScore;
}

Greedy algorithm

Greedy code

for (Lesson lesson : timeTable.lessons) {
    long bestScore = Long.MIN_VALUE;
    Room bestRoom = null;
    Timeslot bestTimeslot = null;
    for (Timeslot timeslot : timeTable.timeslots) {
        lesson.setTimeslot(timeslot);
        for (Room room : timeTable.rooms) {
            lesson.setRoom(room);
            long score = calculateScore(timeTable);
            if (score > bestScore) {
                bestScore = score;
                bestRoom = room;
                bestTimeslot = timeslot;
            }
        }
    }
    lesson.setTimeslot(bestTimeslot);
    lesson.setRoom(bestRoom);
}

DEMO

Greedy algorithm

Algorithm comparison

Greedy
Fast
Scalable
Far from optimal

Brute force

Brute force code

long bestScore = Long.MIN_VALUE;
for (Timeslot timeslotLesson1 : timeslots) {
    lesson1.setTimeslot(timeslotLesson1);
    for (Room roomLesson1 : rooms) {
        lesson1.setRoom(roomLesson1);

        for (Timeslot timeslotLesson2 : timeslots) {
            lesson2.setTimeslot(timeslotLesson2);
            for (Room roomLesson2 : rooms) {
                lesson2.setRoom(roomLesson2);
                ...

                for (Timeslot timeslotLessonN : timeslots) {
                    lessonN.setTimeslot(timeslotLessonN);
                    for (Room roomLessonN : rooms) {
                        lessonN.setRoom(roomLessonN);
                        int score = calculateScore(timeTable);
                        if (score > bestScore)
                            ...

DEMO

Brute Force

How big is the search space?

Search space for n lessons: nn

Search space for 400 lessons: 101040

Atoms in observable universe: 1080

Algorithm comparison

Greedy Brute Force
Fast Slow
Scalable Not scalable
Far from optimal Optimal

Advanced algorithms

Metaheuristics

  • Local Search
  • Tabu Search
  • Simulated Annealing
  • Late Acceptance
  • ...

+ advanced subsystem algorithms

Implement yourself?

Planning optimization made easy

  • Library of optimization algorithms
  • AI, not ML
  • Open Source (Apache license)
  • Actively developed by our Open Core company

Easy score calculator

public HardSoftScore calculateScore(TimeTable timeTable) {
    long hardScore = 0;
    for (Lesson lesson1 : timeTable.lessons) {
        for (Lesson lesson2 : timeTable.lessons) {
            if (lesson1.room == lesson2.room
                    && lesson1.timeslot == lesson2.timeslot) {
                hardScore--;
            }
            if (lesson1.teacher == lesson2.teacher
                    && lesson1.timeslot == lesson2.timeslot) {
                hardScore--;
            }
            if (lesson1.studentGroup == lesson2.studentGroup
                    && lesson1.timeslot == lesson2.timeslot) {
                hardScore--;
            }
        }
    }
    return HardSoftScore.of(hardScore, 0);
}

DEMO

Metaheuristics

Algorithm comparison

Greedy Brute Force Metaheuristics
Fast Slow Fast
Scalable Not scalable Scalable
Far from optimal Optimal (Near) Optimal

How good are humans?

Result comparison

Humans Greedy Brute Force Meta heuristics
Slow Fast Slow Fast
Scalable Scalable Not scalable Scalable
Far from optimal Far from optimal Optimal (Near) Optimal

Maintenance Scheduling

The web UI

DEMO

Live coding

Get started

Start coding today

  1. Go to timefold.ai
  2. Click the Quickstarts repo button.
  3. Pick a quickstart from the README.
  4. Run it:
$ git clone https://github.com/TimefoldAI/timefold-quickstarts.git
...
$ cd timefold-quickstarts/java/maintenance-scheduling
$ mvn quarkus:dev
...

Q & A